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ABSTRACT

Algorithms that schedule task graphs for execution on parallel processors frequently use
simplifying assumptions about the behavior and performance of networks that pass data
between tasks. When there is a high communications-to-computations ratio for a parallel
application some of these assumptions may fail. The result is that the network may become a
bottleneck in executing the application and the scheduling algorithm may not be sufficiently
valid to be useful. We examine this  problem for scheduling real-time applications and draw
some conclusions on how to do scheduling for general parallel processing. We conclude that
whenever communications tasks are a significant part of the workload they must be
scheduled, much as processing tasks are, and that the network resources must be allocated to
perform communications tasks, much as processors are allocated to perform processing tasks.
Moreover, we conclude that due to variations in network design and behavior, a scheduling
method useful for different machines must use a network simulator, different for each
network. We describe how to represent communications tasks in task graphs and consider how
to do scheduling using a network simulator.

INTRODUCTION: TASK GRAPHS, MESSAGE PASSING, AND SCHEDULING

Scheduling task graphs for parallel processing is a problem encountered in compiling
parallelizable applications for execution. By the phrase “task graph” we mean a Directed
Acyclic Graph (DAG) where computational tasks are represented by nodes and directed arcs
represent data dependencies between nodes. The structure of the task graph has the
information required to determine whether computational activities are independent or
dependent. This allows consideration of ways to schedule concurrent and successive
computational activity. In addition to arcs and nodes task graphs frequently have costs,
related to the time needed to progress along a path in the graph, associated with nodes, or
edges, or both.

We assume a multiple instruction stream, multiple data stream (MIMD), message-passing
architecture as our model of parallel processing. Frequently in our discussion we use the term
“network”. By “network” we mean any resource that moves a message between different
computational contexts. We note that this model does not exclude shared memory machines
since message passing may be simulated on a shared memory machine.

A schedule for executing a task graph on a parallel computer is a mapping of task sequences
to processors, one task sequence for each processor used. The sequence for a given processor
determines the order in which tasks are to be executed on that processor. We assume that the
schedule is static and nonpreemptive: computational tasks are executed to completion without
interrupting each other. Each schedule sequence may be executed concurrently and each task
is enabled to execute when all input data is available and prior computational tasks in its
schedule sequence have finished. All of the tasks in the task graph must be included in the
schedule for the schedule to be complete. If any additional tasks are required in order to
execute the scheduled task graph on a specific parallel computer, they too must be in a
complete schedule. (We will show that communication tasks are this kind of task). Finally,
while the use of null tasks in the schedule may decrease the execution time for completion of
the task graph, we will not discuss them here.

For scheduling to be useful, various pieces of execution time performance information are
needed. Of greatest importance is the communications to computation ratio (CCR), the ratio
of communication time to computation time. Before scheduling, the CCR may be bounded
from above for the whole task graph by dividing the sum of all possible communication times
(edge costs) in the task graph by the sum of task execution times. CCR bounds may also be
computed for any subgraph of the task graph to be scheduled. The CCR bound is an
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indicator in deciding whether or not it is advantageous to distribute a task graph. If a CCR
bound is very large, then it may be that distributing the corresponding task graph onto
multiple processors is worse than not distributing it. If some of the communications have low
cost then it may be that some partition of the task graph can be gainfully distributed. If the
CCR bound is vanishingly small, then the number of processors we can gainfully use is
limited only by the number of tasks that can be simultaneously executed, as is manifest in the
task graph. Actual CCRs may only be computed as a function of a scheduled task graph and
accurate computation of a CCR requires a machine performance model that includes a
network behavioral model.

Signal Processing Scheduling Requirements

We are interested in developing task graphs for real-time execution. A principal requirement
of real-time execution is that a schedule must meet specified latency constraints. For many
non-real-time applications there is no defined performance failure for slow applications:
good performance means high throughput, and the quality of an application’s performance
is proportional to its speed. Real-time applications, on the other hand, succeed if they meet
specified latency constraints and fail otherwise. Consequently, we are interested in knowing
the maximum time required to execute both individual tasks and the task graph. Our
scheduling objective function may be taken as minimizing the maximum execution time of
the task graph.

We need to schedule signal processing task graphs. Signal processing applications frequently
have the property that individual tasks have predictable execution time performance statistics
and data inputs and outputs have predictable sizes. These characteristics may not be available
a priori for arbitrary applications, but we assume they can be measured and predicted. We
also note that signal processing applications are frequently communications intensive to the
point that the network becomes the bottleneck. This happens due to a combination of high
CCR and network contention. When this occurs, accuracy in predicting network behavior,
including contention, is necessary for obtaining good schedules.

Finally, we want to schedule task graphs for execution on different parallel computational
platforms. Building a scheduler that works for many different computational platforms is a
challenge. To do this, we need to allow for unanticipated behaviors of arbitrary networks.

RECENT NETWORK MODELS AND SCHEDULING ALGORITHMS

General Network Models

Some effort has been made to model the message passing performance of general networks.
One model of network performance is the LogGP model [1], an elaboration of the LogP
model [2]. The LogGP model uses six parameters: latency, processor overhead, available per
processor bandwidth for short messages, available per processor bandwidth for long messages,
a size limit for short messages, and the number of processors. These parameters are fitted with
respect to a particular system configuration. While the model does not incorporate network
contention, messages are queued and serially accepted on a single port to exit or enter a
processor. At any given time a processor can either be sending or receiving a single message.

Another model of network behavior is the distributed random access machine (DRAM)
model [6]. In the DRAM model there are N processors and each binary partition, or cut, of
these N processors has a specified transmission capacity, “equal to the number of wires”,
between the two processor subsets. A complete DRAM specification specifies a capacity
constraint for each binary partition. A basic assumption of the DRAM model is that for a set
of messages, the time required to send data across the cut is proportional to the load divided
by the capacity. This is the minimum possible time given the capacity constraint and the
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uniform allocation of network resources to messages. An underlying assumption is that the
network routing protocols will be designed to make optimum use the available capacity.

The LogGP model is used to predict mean performance times with no network contention. Its
parameters are statistically estimated from test data. The DRAM model predicts the minimum
transmission rates given capacity constraints. Some algorithms have been analyzed to
demonstrate the validity of these models. Each model uses a specific assumption about the
queuing dynamics. Neither of these models have a general representation for the queuing
behavior of networks. Below we will review some of the assumptions made in the literature
about the effects communications tasks have on scheduling and we will discuss how these
particular models, LogGP and DRAM, may play a role in better schedulers.

Scheduling

A good schedule has short execution time. The basic problem in scheduling task graphs for
parallel computing is efficiently finding a good schedule for an arbitrary task graph under
specified constraints. Examples of constraints are limits on the number of processors used
and bounds on network bandwidth. Non-trivial representations of the scheduling problem are
NP-complete [10], so efficient scheduling methods are usually heuristic. Various heuristics
have been developed based on critical path methods and clustering methods [3, 4, 8]. Much
of this literature concerning the scheduling of a task graph for execution on a parallel-
processing machine makes simplifying assumptions about how communication tasks are
handled. Simplifying assumptions are made because they make the problem more tractable
for heuristics, even though they do not change the essential computational complexity of
finding the optimal solution to the resulting scheduling problem. One must be careful not to
draw conclusions that depend on side effects of these simplifying assumptions.

As an example, one simplifying assumption is that the time it takes to pass a message is zero if
the communicating tasks are on the same processor and a predetermined delay if the
succeeding task is on a different processor. This assumption has the advantage that there is no
change in the task graph structure conditioned on the existence of message passing: only a
reassignment of edge costs is required. Another common assumption is that communications
tasks do not consume processor resources. This assumption implies the use of dedicated
devices that rout messages without interfering with the processing of computational tasks, e.g.,
DMA (Direct Memory Access) devices. A side effect consequence of these assumptions is that
communications tasks are not assumed to be queued in any way on the same processor. Since
interprocessor communications are represented as only a fixed delay, another consequence is
that no resources, such as a network or bus, are ever tied up. These side effects amount to an
assumption of no contention in message passing. Conclusions drawn from a contention free
model are probably only useful as the CCR tends to be small. There are some scheduling
algorithms that do recognize network contention [9], but, to be tractable, a specific scheduling
algorithm must usually be based on a simple, specific network model, such as a multichannel
bus.

We will show that neglecting contention when scheduling task graphs that have high CCRs is
only useful in the context of a highly connected network connecting processors that each
have many asynchronous communication ports. In addition, we believe that to build
schedulers with broad applicability it is preferable to find a single framework that accounts
for the essential properties of most networks. Accordingly, we sketch out such a framework.

Required Features of a Network Model

We identify below features that would be required in a faithful model of network behavior:
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(a) Linearity: For a given message the minimum time required to pass the message is a sum
of terms proportional to the size of the message, with constant terms that incorporate
processor overhead and network latency.

Linearity, a basic feature, is reflected in the LogGP model. The message-passing task is
partitioned into subtasks performed by the network and each processor. Linearity captures
the contention-free behavior of a network passing a point to point message. For a given
throughput, the time to move data is a linear function of its size. The startup, latency, and
completion times of message passing are independent of message size.

(b) Limited I/O port capacity: For multiple messages being simultaneously sent and
received on a given processor there exist rate limitations on the overall processor input and
output (I/O).

We will call the means by which data gets onto or off a processor the I/O ports. These have
static capacity limits and, in the context of multiple messages, dynamic rate limits. For
example, when a task is completed that has multiple immediate dependent tasks on other
processors, there is a temporary glut in communications resource demand. The I/O ports of a
processor may not be able to handle its outstanding message-passing requests expeditiously.
There are two cases that usually occur: either all messages will get immediate routing at less
than average throughput, or some messages will get immediate routing and others will be
delayed. Either of these cases can be implemented in a variety of ways. Messages may be sent
by circuit switching, with possible interruption, or packet switching. In either case, there may
be use of priorities. Message sending tasks on processors may be explicitly scheduled, or they
may be called concurrently and processed asynchronously.

The details of how message tasks are sent off processor makes a significant performance
difference. For example, take a task, which just having completed now enables two messages
to be sent to other processors to enable further task execution on the foreign processors.
Assume that there is only one port by which to exit the processor, and assume that data is sent
at a fixed rate. Also, assume that in the context of no other messages being simultaneously
passed, each message would take ten time units. Now, sending both messages off processor
will not complete until twenty time units have passed. If a small part of each message were
passed at a time, alternating between the two messages, neither message would be completely
passed until approximately twenty time units had elapsed. On the other hand, if messages
were passed in a strict serial manner, then one message would be passed at the end of ten time
units and the second would be completely passed at the end of twenty time units. The
different completion times may be taken advantage of, for example, by delaying the initiation
of one of the message passing tasks not on a critical path.

(c) Limited network capacity: There are rate limitations inherent in the network structure
that limits the instantaneous message traffic flow.

Network capacity limits consist of two parts, one that is static and one that is dynamic. The
static limitation is captured, for example, by the capacity constraints of the DRAM model.
The dynamic part results from queuing. The time it takes to pass a given message is
functionally dependent on the background message traffic. The background message traffic
is dependent on the overall communication required at that point in time in the execution
schedule for the task graph. For real-time, we want to determine an upper bound on the
execution time, therefore we cannot make the optimistic assumption that the network
protocols route messages in the least time allowed by the capacity constraints, as in the DRAM
model. This is because queuing, while necessary to increase throughput of a loaded system,
will tend to increase latency as well.

WHY MODELING CONTENTION IS NECESSARY
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We now examine the behavior of a network with only the first feature, (a) above, assuming no
contention in message passing. We first define a characteristic of task graphs, a degree of
concurrency [3], that bounds the number of processors that will be useful for executing the
task graph. Assume that a task graph is represented by a Directed Acyclic Graph (DAG),
where compute tasks are represented by nodes of the DAG and data dependencies are
represented by directed arcs. The DAG, by transitive closure, also represents a partial order, a
relation we will call dependency. If one task depends on another either immediately or by
multiple traversals along directed arcs, then that task pair is in the partial order relation. If a
task pair is not in the partial order relation, then we will call them not dependent. If two tasks
are not dependent, they may be executed simultaneously; if one is dependent on the other,
they may not be executed simultaneously. We may find many sets of tasks in the task graph
where each element of a given set is not dependent on any other element of the same set. One
or more of these sets may have more elements than the other sets, i.e.; there is a maximal
cardinality over the sets of mutually non-dependent tasks. This maximal cardinality
represents the maximum number of tasks that may be executed simultaneously, which we call
C, the degree of concurrency of the task graph.

Concurrency is related to scalability. Let us say we have a class of graphs representing an
application, where each graph operates on different size data input. For the application to be
scalable, we must be able to use proportionately more processors as the data input size grows
in order to execute the application in fixed time. If the maximum number of processors that
can be utilized is limited to the degree of concurrency of the task graph, the concurrency
must increase as the application is scaled up.

Contention in communication affects scalability. As an illustrative example, in Fig. (1) we
consider how a task graph having  (T + 2) tasks may be scheduled. Assume that all tasks take
one time unit to execute and that all sending tasks also take one time unit, but do not
consume processor CPU-time. The CCR is bounded above by 2/(1+2/T). The tables show one
and two processor schedules for the case where T = 3. Executing all five tasks on processor
P1 takes five time units (left hand table, Fig (1)). A different schedule, which executes one of
the tasks, C3, on processor P2 also takes five time units (right hand table, Fig. (1)). The
network must execute a send from task A to task C3 and from task C3 to task B.  If we
assume an unlimited number of processors and unlimited communications channels, then for
arbitrary T we can effectively use (T - 2) processors and complete the task graph in five time
units. To do this we will need  (T - 1) communications channels connected to processor P1.

On the other hand, assume there is only one channel to handle the communications tasks and
all of the communications must be queued. If we schedule tasks A and B to processor P1 then
every task not performed on processor P1 will require two messages to be sent, during which
time processor P1 can execute two of the tasks {Ci}. This allows one third of the tasks to be
offloaded and executed on another processor. For arbitrarily large T we will only be able to
effectively use two processors and it will take approximately 2/3*T time units to complete the
task graph. Finally, if we do use a schedule using (T - 2) processors where tasks A and B are
scheduled to processor P1 and messages are queued on one port of processor P1, the
schedule will take approximately 2*T time units. This is worse than executing all tasks on a
single processor.

The result of making the assumption that communication bandwidth scales as the number of
processors is that our application appears perfectly scalable. (By perfectly scalable we mean
that increasing the number of tasks and the number of processors by the same factor results
in the same execution time). On the other hand, either of the contention assumptions allows
utilization of only a fixed number of processors, i.e., the application is not scalable. The
execution time is proportional to the number of tasks. Consider what is happening. A good
schedule for a task graph will take advantage of the concurrency in the task graph, assigning
concurrent tasks to different processors. In order to take advantage of concurrency in a task
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Figure 1: Tasks A, Ci, and B are scheduled for T = 3. For the two processor schedule two
message passing tasks are scheduled on the network. The total execution time for both

schedules is 5.
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graph we frequently have to fork execution, creating multiple execution sequences where
there was one to begin with, and then distribute those separate execution sequences onto
different processing resources. If the ability to fork and distribute is not rate limited then we
may create perfectly scalable applications. If we assume that there are rate limitations on
moving data on and off processor, then there is a consequent limit on the rate of forking and
distribution. Consequently, there will be a limit on our ability to exploit apparent
concurrency.

Our example application shows the effects of limited I/O port capacity. We claim that other
examples may demonstrate the effects of bottlenecks due to network capacity limits. In
applications where the communications tasks are significant, i.e., there is a high CCR;
communications resources will be heavily tasked. Unless one can realistically assume a
network bandwidth that scales with the number of processors there is bound to be
communication port and network resource contention. We cannot ignore communication
resource contention; otherwise, we will obtain invalid schedules. We cannot ignore the limits
on the ability to fork and distribute; otherwise, we will obtain schedules that tend to exploit
apparent concurrency when the benefit is unobtainable.

A NEW APPROACH

To accurately predict mean execution time of a given application, and the maximum
execution time to avoid failure of real-time applications, we need some detailed
understanding of how message tasks are executed on a given architecture. The only way to
minimize average execution time and not exceed a specified maximum execution time is to
exert some control over the task schedule. If communication tasks are a significant cost in
executing the task graph, they too must be controlled by being scheduled. Scheduling of
message tasks requires that we can predict average and maximal times that a schedule will take
to execute.

If we do not explicitly schedule, or queue, communication tasks then messages sent
simultaneously and asynchronously may take maximal amounts of time to arrive completely.
Secondly, if we can predict performance of individual tasks then we can predict message
traffic and network loading. Finally, if we explicitly schedule message tasks, we can take
advantage of our ability to predict network loading to reduce queuing-induced delays. We
conclude that in order to obtain optimum performance we must schedule communications
tasks. To do that we need to represent communications tasks so that they may be scheduled
while simultaneously allowing for different models of network communication. A basic
assumption here is that the task structure of communications may be made independent of
the communications hardware. Below we introduce the message task constructs necessary for
scheduling task graphs for execution onto message passing machines. We model the tasks
represented by communications and define how they must be inserted into a task graph to be
executed.

Representing message passing tasks:

There exist many different communications protocols depending on system designs and on
the contexts of sender and receiver. Using DAG diagrams, we will describe three protocols
below: the Synchronous Send, the Ready Send, and the Buffered Send. Each protocol
specifies a definite sequence in which the Sending process, the receiving process, and the
“network” commit to the passing of the message.

The Synchronous Send:

The Synchronous Send is illustrated in Fig. (2).  Two sequences of task execution, beginning
respectively with Task A and Task C, are executing on two processors. One task sequence
initiates the sending of a message “X”. The first communication is a message “envelope”
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which contains contextual information about the message to be sent, including, for example,
the name of the variable (“X”) to be communicated and the size of the buffer required to
receive the message. Sending this envelope signifies that the first processor is ready to transfer
data. After this envelope is received, the second task sequence has sufficient information to
allow the message transfer. In particular, the receiving task sequence may provide buffer
space to receive the message. Upon completion of the Start Receive task on the second
processor, both processors are ready for the data transfer. Finally, the network determines
when the transfer actually takes place and synchronized data transfer processes occur on the
first processor, the second processor, and the network. The three “Transfer X” tasks signify
that actual data transfer occurs on three devices; the two processors and the network. Between
the Start Send and Complete Send other tasks may be scheduled on the sending side under
the assumption that the actual transfer, when it occurs, may occur asynchronously. If the
transfer cannot occur asynchronously, then we assume that either the transfer task on the
processor interrupts a processing task, or no other tasks will be scheduled between the Start
Send task and the Complete Send task on the first processor. In any case, once the Start Send
task is completed, access to the X buffer by the transfer process may not be blocked nor may
writing occur until after the Complete Send task has finished. Similarly, on the receiving side,
we assume that other tasks may be scheduled if there is no interference with the transfer
process or the receiving buffer for X.

The Ready Send:

The Ready send is illustrated in Fig. (3). Two sequences of task execution, beginning
respectively with Task A and Task C, are executing on two processors. The second of these
task sequences indicates that it is prepared to receive a message, X, by sending a Ready signal.
We may assume that a prior context exists whereby the receiving buffer can be properly sized
for the safe receipt of the message. When the sending side has a message to send, Start Send is
executed. Consequently, the transfer is enabled and occurs when the network is ready. As
above, we assume that the actual data transfer may be asynchronous with other task
processing on the communicating processors. Again, the three “Transfer X” tasks signify
that actual data transfer occurs on three devices; the two processors and the network.



Scheduling Task Graphs with Contention in Communication

12

Complet e
Send X

Task A
Task C

Complet e
Receive X

St ar t
Send X

St ar t
Receive X

Ready Send

Ready

St art
Transfer X

...... T ransfer
X

Tr ansfer
X

Tr ansfer
X

Figure 3.



Scheduling Task Graphs with Contention in Communication

13

The Buffered Send:

The Buffered Send is illustrated in Fig. (4). Two sequences of task execution, beginning
respectively with Task A and Task C, are executing on two processors. One task sequence
initiates the sending of a message “X”. The first communication is a message “envelope”
which contains contextual information about the message to be sent, including, for example,
the name of the variable (“X”) to be communicated and the size of the buffer required to
receive the message. Sending this envelope signifies that the first processor is ready to transfer
data. After this envelope is received, the second task sequence has sufficient information to
allow the message transfer. If the receiving processor is not ready for immediate transfer then
the message is immediately buffered. When the message to be sent is either transferred or
buffered, the send may be completed, where completion means, as above, that the variable X
may be reassigned by other tasks. (Note that the OR node of Fig. (4) is the only node that
requires only one input to be enabled). Again, the three “Transfer X” tasks signify that
actual data transfer occurs on three devices; the two processors and the network.
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HOW TO SCHEDULE A GRAPH WITH MESSAGE PASSING

We have introduced a messaging task structure that is independent of machine. The message
sending task structures described above have two immediate effects: they change the task
graph topology and they allow for the scheduling of the message sending tasks themselves.
We have not yet discussed how one may schedule the task graph on any specific machine.
The problem is that message passing or network architectures vary widely in their attributes
and behavior. Therefore, we describe a way to do scheduling that is hardware independent
and works for any specific machine. The way we do this is to define a scheduling method that
uses a simulator to determine the behavior of the message passing hardware. Given any
multiprocessor schedule of tasks that include message passing tasks and a simulator for a
specific machine we can calculate the time to execute a given schedule. After we describe the
interface to the simulator, we will discuss how to do scheduling using such a simulator.

THE NETWORK SIMULATOR

Because we need to calculate the cost of a schedule by simulation, the interface of the network
simulator is specified to work together with other event-time simulation programs. Simulation
of concurrent computational tasks without communication on a multiprocessor is
straightforward. Communications may be handled by appropriately making calls to a network
simulator. We want to notify the network simulator when message tasks are to be initiated. As
the simulation of the execution of a schedule progresses in time, each time a message task is
encountered on the schedule we need to call the network simulator. The network simulator
will be called to simulate execution of message tasks. We also want the network simulator to
notify us when a message task will be completed. We call the completion of a message task a
network response event. The simulator will not be executed asynchronously as a co-routine.
Instead, the network simulator will inform us of the time of occurrence of the next network-
response event each time the network simulator is called. The network simulator will be called
not only to queue message tasks but also to update the state of the network to a specified
simulation time. Between calls, the network simulator will maintain all network state variables
representing uncompleted message tasks and the network state resulting from the last
simulation time update in an aggregate variable, Network_State. Each time the network
simulator is called a new, current value for the next network-response event,
Next_Network_Event, is returned, as is a new value for the variable Network_State. The
variable Next_Network_Event also includes the time it occurs. A network response event is, in
the context of the message sending protocols described, the start of any data transfer for a
message and the completion of a data transfer.

The two calls to the network simulator will look like this:

(Next_Network_Event, Network_State)
:=  Queue_Message_Task( Task,  Start_Time, Max_Time, Network_State)  and,

(Next_Network_Event, Network_State)
:=  Update_Network_State( Next_Network_Event,  Max_Time, Network_State).

Queue_Message_Task is used to task the network and Update_Network_State is used to
advance the simulation time of the network simulator to the event time of its first input
variable, Next_Network_Event. The network simulator will return a value for the next
message-task completion-event dependent on the value of Network_State created by previous
calls to the network simulator. To limit the amount of computation used by the network
simulator, we indicate a maximum simulation time, Max_Time, beyond which we do not need
to know about. If the network does not have a response event before Max_Time, then the
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calls to the network simulator will return a null value, occurring at Max_Time, for
Next_Network_Event.

The simulator will be used as follows. Some message tasks may be queued by calling
Queue_Message_Task. A call to Update_Network_State establishes the time from which the
network simulator cannot be reversed. Since Update_Network_State uses input possibly
resulting from multiple calls to Queue_Message_Task, the calls to the network simulator
should occur in time order according to the message task Start_Time. Each call to
Queue_Message_Task will have a value for Start_Time that is greater than or equal to the
previous value. There are two steps to calling the network simulator in time order. A set of
message tasks should be queued in time order, one by one, by calling Queue_Message_Task.
Secondly, there is at any time only one value for Next_Network_Event, and a corresponding
time for that event. If between calls to the network simulator the corresponding time for
Next_Network_Event is less than the Start_Time for the next message task to be queued, then
Update_Network_State must be called before queuing any more message tasks.

OPTIMAL SEARCH, A*, AND HEURISTIC SEARCH

A “black-box” simulator can be used to create good schedules. An heuristic need not
depend on the details of operation of specific network types. One of the most powerful
methods for finding solutions to NP-complete problems, optimal search [7],  uses the
combination of an heuristic cost-evaluation function and an accurate cost-evaluation
function. Below, we sketch out the approach for creating good schedules for executing task
graphs on parallel processors. We use the notion of a partial schedule. A partial schedule is a
truncated complete schedule. By successively appending ready-tasks to the ends of the
individual processor schedule-sequences, we arrive at a complete schedule. A ready task is a
task that has all of its predecessors finished. (We assume that communications tasks are
inserted where they are necessary).

Algorithm A*:

Begin with an empty partial schedule.

With an heuristic, estimate the completion time, h0 , the minimum time required to
execute the task graph;

Associate the evaluation function value, f0 = h0 = 0, with the empty partial schedule;

Put the empty partial schedule onto a list called OPEN;

Loop:
Choose the partial schedule, index n, on the list OPEN having the least value, fn . If the

list OPEN is empty, exit with failure. If there are multiple partial schedules with the
same minimal value of the evaluation function, choose a partial schedule that is
actually a complete schedule, otherwise choose arbitrarily.

If pn is a complete schedule, then accept it as the solution and exit Loop

Move the partial schedule, pn , to a list called CLOSED.

Create all alternative partial schedules, { pi } by adding one ready task to the partial
schedule, pn . A ready task is one with all predecessor tasks completed;

Using the simulator, compute the time, { ti } to execute each newly generated partial
schedule in { pi };
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With an heuristic, estimate completion times, { hi }, the minimum additional time
required to execute the remaining unscheduled tasks for each newly generated partial
schedule in { pi };

Compute the evaluation function values, { fi }, where fi = ti + hi for each newly
generated partial schedule in { pi }, and associate it with the corresponding partial
schedule.

Put each newly generated partial schedule onto the list called OPEN;

End Loop

If the heuristic function, h, at all times returns a strict lower bound on the time to complete a
partial schedule, then the solution schedule is guaranteed to be optimal. In the case that search
times are too long using a given heuristic, various alternative schemes are possible as outlined
in [7].

CONCLUSIONS

We have not, chosen at this time, an heuristic for using the optimal search approach. It has
been our intent here to outline how to adequately deal with the problem of scheduling when
there is contention in communications. We prefer to see scheduling results where computed
schedule lengths are realistic reflections of task graph execution times on real hardware. We
have demonstrated that it is necessary to separate the heuristic solution methods from an
accurate evaluation of the time required to execute a specific schedule on a specific machine,
and we have shown how to do this. It is not necessary to use the Heuristic Search method we
suggested. Other approaches, e.g., [5], where integration of a simulation based computation
of the objective function is feasible. We have specified realistic message passing protocols
represented as task graphs that are not hardware specific. We outlined the requirements of a
machine simulator for accurately computing the amount of time required to execute a
specified schedule.

We believe that with our approach individual hardware vendors could provide simulators that
allow others to compute how long it would take to execute specified schedules of tasks,
including communications tasks. We expect that individual researchers can develop
scheduling heuristics that can be tested for any machine and following our approach, it
should be straightforward to determine which scheduling algorithms work best on any given
machine.
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